
PII:S002o-7683(96)00208-9

~ Pergamon
Int. 1. Solids Structures Vol. 34, No. 25, pp. 3215-3233, 1997

© 1997 Elsevier Science Ltd
All rights reserved. Printed in Great Britain

002()-7683/97 $17.00 + .00

RELAXATION OF THERMAL STRESSES IN
DISSIMILAR MATERIALS (APPROACH BASED ON

STRESS INTENSITY)

TADANOBU INOUE and HIDEO KOGUCHIt
Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1

Kamitomioka, Nagaoka, Niigata, 940-21, Japan

(Received 28 December 1995; in revised/orm 27 August 1996)

Abstract-The characteristics of thermal stresses near apex in dissimilar materials composed of
arbitrary wedge angles under thermal loading are investigated theoretically and numerically. The
thermal stresses ITh (h = rr, rfl, flfI) near the apex are represented by Khjr"j-I, where pj-I is the order
of stress singularity and K hj indicates the intensity of stress field with j = 1,2, ... , n. For the
metal/ceramics composite, combinations of the bonded wedge angle, in which Khj becomes zero, are
clarified theoretically, and the disappearance conditions of stress singularity from both the order Pi
and the intensity Khj are examined. Also, classification of the distribution of the intensity Khi which
divided into two forms is shown for P, and P2, respectively, on the <P, + <P2-<P, plane. © 1997 Elsevier
Science Ltd.

1. INTRODUCTION

In dissimilar materials, the stress singularity frequently occurs under surface tractions and
thermal loading due to discontinuity of materials on the interface. The stress fields (Jh

(h = rr, re, ee) near the apex, in dissimilar materials, are defined by a linear combination
of the singular solutions KhjrPj -I of type rP -

1 corresponding to roots Pj in 0 < Re(p) < 1
and Khg log r of type log r to a double root at p = 1, no singularity ones KhjrPj -1 to roots Pj
in Re(p) > 1 and particular ones Khpa to a root at P = 1 and K~g to a double root at p = 1
(Bogy, 1970; Inoue et at. 1994; 1995), where Pj is the j-th root of an eigen equation and Kh

for each solution indicates the intensity of the stress field. Bogy (1971a), and Hein and
Erdogan (1971) derived the eigen equation for a two-phase bonded structure with arbitrary
wedge angles, and they have clarified the relationship between the order of stress singularity
and the combinations of materials with wedge angles and mechanical properties. Bogy
(1971b), Fenner (1976), and Cook and Erdogan (1972) investigated two bonded half planes
containing a semi-infinite crack terminating at an interface, and showed that the order of
stress singularity at the tip of the crack existing in the stiff side of the two-phase materials
becomes large in comparison with that in the soft side. Blanchard and Ghoniem (1989)
examined thermal stress singularities in finite bonded quarter planes by using an eig
enfunction expansion method.

As mentioned above, studies on the order of stress singularity have so far been carried
out by the above investigators and others (Inoue and Koguchi, 1996; Koguchi et at., 1996;
Pageau et at., 1994a; 1994b; Williams, 1952), and the relationship between the order of
stress singularity and the combinations of materials has been made clear. However, the
characteristic on the intensity of the stress field in dissimilar materials is not made clear. In
particular, a relation between the stress intensity and the combinations of materials has not
yet been theoretically clarified for dissimilar materials with arbitrary wedge angles.

In this paper, the equations for thermal stresses near the apex, in semi-infinity dissimilar
materials composed of two homogeneous isotropic wedges with arbitrary angles under a
uniform temperature change (Fig. 1), are theoretically derived using the Airy stress function
through the Mellin transform. The uniform temperature change is then assumed to act on
the whole of the bonded structure. Next, for the bonded structure of Cu/Si3N 4 composed
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Fig. I. Model for a two-phase bonded structure under a uniform temperature change.

of three-quarters planes, a relation between the order of stress singularity and the wedge
angle ({JI of material 1 is investigated, and the distributions of the stress intensities Khl and
Kh2 for roots PI and P2 are examined as to how they vary with the wedge angle ({JI' It is
shown that the distribution of the intensity K hi is classified by two forms for those of root
PI and P2, respectively. Also, the singular solutions can disappear even if the root Pi of the
eigen equation exists in the range 0 < Re(p) < 1, by finding the combinations of the bonded
wedge angles yielding K hi = O. Hence, it is very important for improving the reliability of
dissimilar materials to investigate the bonded wedge geometry yielding Khi = O. So, the
relationship between the wedge angle ({JI of material 1 and the total angle ({J] + ({J2 of the
bonded wedge, in which Khj become zero, is studied in detail for the Cu/Si3N4 composite.
After that, classification of the distribution of the intensity K hj is shown on the ({JI + ({J2-({JI

plane, and the disappearance conditions of stress singularity from both the order of singu
larity and the stress intensity are clarified.

2. THERMOELASTIC THEORY IN DISSIMILAR MATERIALS

The theoretical solutions of the thermal stresses in dissimilar materials under thermal
loading are defined by the process shown in Table 1 (Inoue et al., 1995), as follows

In the case of a singularity of type rP- I

(1)

In the case of a singularity of type log r

(2)

where h represents each stress component (rr, re, ee) and the dimensionless variable p is
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Table I. Derivation process of thermal stresses in a two-phase bonded
structure under a uniform temperature change

Airy stress function rf>*, stresses (a;';, a;'O, a1.) and
displacements (u~, uf) through the Mellin transform

1For boundary condition of
stresses and displacements

2
[~b8{W} = {L}

{w} = {a"b"c"d"a"b"c2,d2}T

{L} = {O,O,O,O, TI2,O,O,O}IT
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G 1 n={II+
V

k I2 = G,'
for plane strain

for plane stress

1According to
Cramer's Principle

3

{

a(p)b = ~ T1,Mab , b(P)b = ~ T I2 M M

1 1
C(P)b = ST I2 M,o, d(p). = ST 12 M db

S: Eigen equation, <5 ( = 1,2) : Each region number

1From reversion of the
Mellin transform

given by

4
-I f'+'ooa,,(r,O) = -2. a;';(p, O)r"-I dp

1tl ('-ioo

o< Re(p), 0 < r < OCJ

r
p = -(r« a),

a

etc.

(3)

where a is a radius of a uniform temperature change acting to the semi-infinity bonded
structure and must be much more than distance r. The first term in eqn (1) is the solution
corresponding to the j-th root Pj of an eigen equation in the range of 0 < Re(p) < 1
(singularity) and Re(p) > 1 (no singularity), the second term which is independent of
distance r is a particular solution corresponding to a root ofP = 1 which is always the root
of the eigen equation, and eqn (2) is a solution corresponding to a double root ofP = 1(p ~
1). The K hj, K hpm K hg and K~g for each solution in eqns (1) and (2) are the dimensionless
stress intensities which depend on the wedge angles of the materials, their mechanical
properties (Young's modulus, Poisson's ratio and thermal expansion coefficient) and the
angle coordinate 8. As is seen from eqns (1) and (2), the thermal stresses near the apex are
calculated from the sum of each solution for root Pi of the eigen equation. The eigen
equation of the two-phase bonded structure is derived by expanding and arranging the
determinant of the coefficient matrix A of an 8 x 8 system of Step 2 in Table 1 (Bogy,
1971a), defined as
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S(({J, , ({J2, a12' /312 ;p) = A(({J], ({J2 ; p)/3f2+2B(({J], ({J2 ;p)a12/312 +C(({J], ({J2 ;p)af2

+2D(({J], ({J2 ;p)/312 +2£(({J], ({J2 ;p)a 12 +F(({J], ({J2 ;p), (4)

where a'2 and /3'2 are parameters shown by Dundurs (1969), defined as

with

(5)

for plane strain

for plane stress'
(6)

where k 12 represents the stiffness ratio (see Step 2 in Table I) and 1J represents each region
number (1J = 1,2). In Table I, a function T I2 of Step 2 which is dependent on the thermal
expansion coefficient is led from the interface condition for the r-direction displacement
through the Mellin transform (Sneddon, 1951), and M ab ~M do of Step 3 are functions
involving the wedge angles, elasticity constants (Young's modulus and Poisson's ratio) and
the root Pi- In eqns (1) and (2), the stress intensities K hj, K hpa , K hg and K~g of each solution
non-dimensionalized by £zaz t:J.T!(1 +vz) can be written as

(7)

where Khj is an independent function of the thermal expansion coefficient.

3. THEORETICAL RESULTS

In this section, the relation between the stress intensity Khj and the bonded wedge angle
in a metal/ceramics composite under thermal loading is examined in plane strain condition.
The bonded structure of the Cu/Si3N4 composite composed of three-quarters planes with
material properties as shown in Fig. 2 is analyzed. A uniform negative temperature change
- t:J. T is assumed to act on the whole of the structure. Such a situation occurs during
soldering of a metal/ceramics composite.

3.1. Distribution ofstress intensity
The variations of roots Pj of the eigen equation with the wedge angle ({JI of material I

are plotted in Fig. 3. The roots noted here are only concerned with the stress singularity.
The roots in the cases of ({J, = 0° and 270° agree with those in a free-free single wedge for
a wedge angle of 270° given by Williams (1952). Varying the wedge angle ({JI from 0° to
270°, two roots PI and P2 yielding the singular solution of type yP-l occur, where the second
root P2 is a double root at pz = I in ({Jl = 97.20° and 120.24°, i.e. the singular solution
of type log r occurs. Also, the solution for P2 exhibits no singularity in the range of
97.20° < ({Jl < 120.24°. The solution for the first root PI yielding the dominant factor on
the stress field near the apex gives the singular solution of type r P -

1 for all values of ({JI'

Figures 4 and 5 show the distributions of stress intensity against angle eof roots P, and pz
in the cases of ({Jl = 45° and 180°, respectively, where F] and F 2 indicate the free surface,
and B'2 and CL indicate the interface (e = 0°), and y = 0° (- 1350

~ y ~ 135°) as shown
in Fig. 2. Khj shown in these figures is the independent function of the thermal expansion
coefficient as shown in eqn (7). It is found from Fig. 4 that the signs (tension and com
pression) of stress intensity for P, in ({J, = 45° are reversed to those in ({J, = 180° for each
stress component (rr, re, ee). The form of the distribution as shown in ({Jl = 45° is referred
to as Style 1, and that in ({JI = 180° as Style 2. Also, Keel attains a maximum tension in
Style 1 and compression in Style 2 at ca. y = OO(CL), where Y = (({J1- 135°)+e from the
relation illustrated in Fig. 2. In Fig. 5, the distributions of the stress intensity for pz in
({J, = 45° are reversed to those in ({J, = 1800

• The form of the distribution in ({J, = 45° is
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Fig. 2. CujSi3N. composite in three-quarter planes under thermal loading.

• 1 i···..··..·..·········~··············· ..······r·······..··········..··i·········
i t ! PI" 1 -t .

f{!j + f{!2 ~ 270°

···················T·····~;:~~~r····················r······~·;~:~1~····················r··················
....................., 1··..·..· ·..· '1"........ .. ··r · · ··..r··..·..· ··..

1.6

1.4

r:i; 1.2

... 1
~

0.8

0.6

0.4
o 45 90 135 180 225 270

Wedge angle f{!j (deg)
Fig. 3. Variations of roots Pi of the eigen equation concerned with stress singularity against wedge

angle <P 1 of material I.

referred to as Style 3 and that in ({Jj = 180° as Style 4. Also, it is found that K002 attains a
maximum tension and compression near y = ± (({J, + ({J2)/5, as well as K r02 near y = 0°,
± (({Jl + ({J2)/3 in both Style 3 and 4.

In these results, the distribution of the stress intensity Khi is divided into two forms of
Style 1 and 2 for PI and Style 3 and 4 for P2' We expect that the stress intensity Khj becomes
zero regardless of angle 8 at a bonded wedge angle where the distribution form of the
intensity varies from Style 1 to 2 for PI and from Style 3 to 4 for P2'

3.2. Bonded wedge angle satisfying K = 0
The stress intensity Khj for root Pi is defined as

Krripj' 8)lb = - [:;2 + (Pj +1)] KFipj' 8)lb

d
KrOipj, 8)lb = Pj d8KFipj, B)lb'

Kooipj, 8)lb = -pipj+ I)KFj (Pj' 8)lb' (8)

where the function KFipj, 8) is given by

(9)
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Fig. 4. Distributions of stress intensity Kh I independent of the thermal expansion coefficient for root
(a) PI = 0.6022 in !PI = 45° and (b) PI = 0.5148 in !PI = 180°.

with

M(pj, 8) 10 = -Mao(pj) sin [(Pj+ 1)8] +MbO(PJ cos [(Pj+ 1)8]

- Mco(PJ sin [(Pj-l)8] +MdO(pj) cos [(Pj -1)8], (10)

where, b( = 1,2) represents each region number. Also, Mao - M dO are functions involving
the wedge angles, Dundurs parameters and the root P of the eigen equation. Hence, the
stress intensity Khj for each component becomes zero in all regions (i.e. regardless of angle
8) according to the function KFj = 0, i.e. Mao = MhO = M co = M dO = O.

Figure 6 shows the relationship between the function KEl for the root PI at y = OO(CL)
and the wedge angle ({J], where the function KEl is independent of the thermal expansion
coefficient. In this result, KEl is positive in the range 0° < ({Jt < 146.50°, negative in
146.50° < ({Jl < 270° and equal to zero at ({Jt = 146.50°. Therefore, the distribution of
the stress intensity Kht represents Style 1 in the range 0° < ({JI < 146.50° and Style 2 in
146.50° < ({Jl < 2700

, and Kht becomes zero regardless of angle 8 at the angle ({JI = 146.50°
where the distribution varies from Style 1 to 2. Furthermore, KEl becomes zero at ({JI = 0°
and 270°, i.e. a free-free single wedge for 2700

•

Figure 7 shows the variation of function KF2 for the root P2 at y = 54° with the wedge
angle ({Jt. As seen from Fig. 7, the function KF2 becomes zero at ({JI = 85.60° and 195.10°,
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Fig. 6. Relationship between function KFJ for root PI at y = 0° and wedge angle ({Jt of material I.

and larger as the angle <PI approaches the bonded wedge geometry with logarithmic singu
larity, i.e. <PI -+ 97.20° and <PI -+ 120.24°. It is found that the sign of Kn is reversed at these
wedge angles. Consequently, the distribution of the stress intensity Kh2 represents Style 3
in 0° < <PI < 85.60°, 97.20° < <PI < 120.24° and 195.10° < <PI < 270°, and Style 4 in
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Fig. 7. Relationship between function KF2 for root P2 at y = 54° and wedge angle !P, of material 1.

85.60° < ({JI < 97.20° and 120.24° < ({JI < 195.10°. Furthermore, Kn becomes zero at
({Jt = 0° and 270°.

4. DISCUSSION

4.1. Results ofanalysis
It is found from Figs 4-7 that the distribution of the stress intensity Khj is divided into

two forms of Style 1 and 2 for PI> and Style 3 and 4 for P2 at the angle, ({JI, yielding the
conditions of Khj = 0 and P -+ 1 (a double root of the eigen equation). The first condition
Khj = 0 is derived from the numerator M(pj, B) in eqn (9) and the second P -+ 1 from the
eigen equation in eqn (4). The magnitude of the stress intensity Khj strongly depends on the
value of the first derivative of the eigen equation, i.e. (dS/dp)p~pj' Figure 8 shows (dS/dp)p=pj
and (dS/dp)p= I against the wedge angle ({JI' It can be seen that the absolute values of
(dS/dp)p~Pl compare largely with those of (dS/dp)p=P2' Therefore, the magnitude of Khl for
root PI is small in comparison with that of Kh2 for P2 (Figs 4 and 5). The value of (dS/dp)p=PI
does not change the sign of Khb since it is negative for all values of ({JI' Incidentally, the
value of (dS/dp)p=P2 is positive in the range 0° ~ ({J\ < 97.20° and 120.2° < ({JI ~ 270°
(singularity of type r P-

I
), negative in the range 97.20° < ({JI < 120.24° (no singularity) and

zero at ({JI = 97.20° and 120.24° (logarithmic singularity). Hence, (dS/dp)p=p2 affects the
change of sign of Kh2 . Also, the stress intensity Kh2 approaches infinity as ({JI -+ 97.20° and
({JI -+ 120.24° (Fig. 7), because the values of (dS/dp)p~p2 then approach zero. The particular
solution Khpa [Munz et al. (l993b) called this solution the regular stress term] also
approaches infinity as ({Jt -+ 97.20° and ({Jt -+ 120.24° [i.e. (dS/dp)p~ tl, where it always has the
opposite sign as Kh2 because (dS/dp)p~P2 and (dS/dp)p= I have the opposite sign. Therefore,
KdKhpa -+ -1 for p -+ 1. This characteristic agrees with that obtained by Munz and Yang
(l993a), and Munz et al. (l993b).
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Fig. 8. First derivative dSjdp of roots P" P2 and P = 1 with wedge angle !PI of material I.
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Furthermore, in the present analysis, the distribution of stress intensity for dissimilar
materials under cooling was examined and that under heating is obtained by reversing the
signs of results for the present analysis.

4.2. Relation with K = 0 ofwedge angle ({JI and total angle ({JI + ({J2

The singular solution KhjrPJ -I can disappear under combinations of materials yielding
Khj = 0, even if root Pj of the eigen equation exists in 0 < Re(p) < 1. Figure 9(a) shows the
relationship yielding Khl = 0 between the wedge angle ({JI and the total angle ({JI + ({J2 of the
bonded wedge in the Cu/Si3N4 composite under thermal loading. Figure 9(b) shows the
variations of the corresponding root PI with the total angle ({JI + ({J2' The bonded wedge
angle, ({J1+({J2, yielding Khl = 0 exists in the range of 1630

~ ({JI + ({J2 ~ 337°, but does not
exist in the ranges of ({JI + ({J2 < 163° and ({JI + ({J2 > 337°, because the corresponding root PI
is then a complex one p( = ~ ±i'1). When P = ~ ± i'1, the intensity is separated into the real
part Kh< and imaginary part K hq, and the bonded wedge angle yielding simultaneously
Kh~ = 0 and Khq = 0 then does not exist. Also, it is found from Fig. 9(a) that the bonded
angle yielding Khl = 0 exists in the range of ({JI > «({Jt + ({J2)/2 when GI < G2and in that of
({JI < «({Jt + ({J2)/2 when GI > G2· In the range 1700

~ ({JI +({J2 ~ 305°, the relationship between
({J! and ({Jl + ({J2 can be expressed by the approximate equation: ({JI = 0.464«({J1 + ((J2) +21.766.
In Fig. 9(b), the corresponding root PI is within 1.3507 ~ PI ~ 0.5057, where PI is larger
than 1 (no singularity) in ({JI + ({J2 < 1800 and smaller than 1 (singularity of type r P -

I
) in

200 I :

: ! Cu/S4N4
I i

1700

: ! i i ................................ ..·r····"!·································..!···········....... ·"?··1·~···· ..············ .

163°' I _t- lLo 3370

-:-=-: rK,O~~:I:/:----T-----
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120 180 240 300

Total angle of bonded wedge fIJI +flJ2 (deg)
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(b)
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:

3050 I 3370

•••.••..•J.••..••••: .••••••.••••.••.•••.•

-----~ : i: ~
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_ ---, ~ L ..
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Fig. 9. (a) Relationship yielding Khl = 0 between the wedge angle !PI of material I and the total
angle !PI +!P2 of the bonded wedge and (b) variations of the corresponding root PI> in the Cu/Si3N.

composite under thermal loading.
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Fig. 10. (a) Relationship yielding K., = 0 between the wedge angle <PI of material I and the total
angle <PI + <P, of the bonded wedge and (b) variations of the corresponding root p" in the Cu/SiJN4

composite under thermal loading.

<PI+<PZ> 180°, i.e. the root PI for <PI+<PZ = 1800 gives a boundary of singularity and no
singularity.

Figure 10(a) shows the relationship yielding KhZ = 0 between <PI and <PI + <PZ for the
Cu/Si3N4 composite under thermal loading and Fig. lOeb) shows the variations of the
corresponding root PZ with the total angle <PI + <Pz· The wedge angle <PI yielding KhZ = 0
exists one by one in <PI > (<PI +<pz)/2 and in <PI < (<PI +<pz)/2, respectively. One exists in the
range 188°:::; <PI + <PZ :::; 354° and another in 166°:::; <PI+<PZ:::; 337°. A slope against
<P I yielding KhZ = 0 against <P I + <Pz existing in <P 1 > (<p 1+<pz)/2 is larger than 1/2 and
that in <PI < (<PI +<pz)/2 is smaller than 1/2. The corresponding root PZ is within
1.8400 ~ Pz ~ 0.5472 and 1.5515 ~ PZ ~ 0.5134, respectively, and the root corresponding
to the bonded geometry yielding KhZ = 0 existing in <PI > (<PI + <pz)/2 is small in comparison
with that existing in <PI < (<PI +<pz)/2. Also, the ranges with <PI + <PZ yielding KhZ =f. 0 exist,
where the corresponding root P2 is then a complex one.

4.3. Classification ofdistribution on K
The distributions of the stress intensities Kh1 and KhZ are categorized on the <PI +<PZ

<PI plane from results denoted by (a) in Figs 9 and 10. The distributions of Khl and KhZ are
classified into Styles 1 and 2 for Kh1 and Styles 3 and 4 for KhZ, respectively (Fig. 11). Figure
II shows the classification for dissimilar materials under cooling. On the other hand, the
classification under heating is obtained by changing each Style shown in Fig. 11, such as
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Styles 1 and 3 under cooling changes into Styles 2 and 4 under heating, respectively. It is
found from Fig. 11 that the distributions alter from Style 1 to 2 and from Style 3 to 4,
respectively, at conditions of Khi = 0, Pi --+ I (a double root at P = I) and the complex root
which depends on Khi = O. Two roots PI and pz are divided in Re(p) > 1 (the left side of
the Pi --+ 1 line in Fig. 11) and Re(p) < 1 (the right side of that) by the Pi --+ I line. Therefore,
the Khi = 0 line and the region of the left side of Pi --+ 1 line depicted in Fig. 11 indicate the
disappearance conditions of stress singularity for each solution. Here, in the region between
the right side of PI --+ 1 and the left side of PZ --+ 1, root Pi existing in the range of
o< Re(p) < 1 is only PI ; hence, the stress singularity then disappears if Khl = O. In the
region of the right side of PZ --+ 1, two roots PI and pz exist in the range of 0 < Re(p) < 1;
hence, the singularity then does not disappear even if Khl = 0, because there is the singular
solution for the second root Pz. However, the thermal stresses then become small because
the singular solution for the first root PI> yielding the most dominant factor on the stress
field near the apex, disappears.

Also, K hl and KhZ do not always represent the distributions of Styles 1 and 2 for K hl

and Styles 3 and 4 for KhZ' Those distributions differ from Styles 1-4 as the combinations
of wedge angles approach the regions producing complex roots. In the case of
({>I + ({>z :::::> 3600

, the distribution styles of K hl and KhZ for all the combinations of wedge
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angles differ from Style 1-4, because the values of roots PI and P2 are then nearly equal
(Fig. 12). Complex root occurs when two real roots combine with variations of wedge
angles of materials and their mechanical properties, which has been clarified by many
researchers (Inoue and Koguchi, 1996; Pageau et al., 1994a; Hein and Erdogan, 1971;
Fenner, 1976). Hence, when the values of two real roots PI and P2 are almost equal, the
distribution forms of stress intensity for these roots indicate the characteristic near the
condition of P = ~ ± il1. Furthermore, the magnitude of the stress intensity Khj becomes
larger as the combinations of wedge angles approach the conditions ofPj ~ I and those of
Pj' PH I ~ P = ~ ±il1. As mentioned previously, Kh)Khpa -+ - I for conditions ofPj -+ 1. For
conditions of Pj and PH I -+ P = ~ ± il1, when K hj approaches infinity, the corresponding
intensity Kh(j+I) also approaches infinity, where Kh(j+I) always has the opposite sign as K hj ;

therefore Khj/Kh(j+ I) -+ - I for Pj' PH 1-+ P = ~ ±il1.

4.4. For other stress intensities
The distribution of the stress intensity Kh3 for the third root P3 is also divided into two

forms (Styles 5 and 6) with different signs for each stress component. Figure 13(a) and (b)
show the distributions of Kh3 for root P3 = 1.0330 and 0.93 IO in the case of the Cu/Si3N4

composite with C{JI = 1200 and 150°, respectively, in the condition of C{JI +C{J2 = 3600 under
cooling. The form of the distribution as shown in Fig. 13(a) is referred to as Style 5 and
that in Fig. 13(b) as Style 6. The stress intensity K883 attains a maximum tension in Style 5
and compression in Style6neary = ± (C{JI +C{J2)/4, and a minimum in Style 5 and a maximum
in Style 6 near y = OO(CL). Moreover, the distribution of Kh3 is nearly symmetrical with
respect to II = 0°.

The distribution of the particular solution K hpa for P = I as expressed in eqn (I) can
be perceived from K hj for root Pj' Then, the distribution of K hpa is represented by the
distributions of K hj for P = Pj near the condition of P = 1. For example, it is found from
Fig. 12 that the closest root to P = I is the third one P3, regardless of C{J] in the Cu/Si3N4

composite with C{JI + C{J2 = 360°. The distribution of K hpa is then represented by Styles 5 and
6 (Fig. 14). As mentioned previously, the distribution form of K hpa always has the opposite
sign as that of Khj. Also, the combinations of wedge angles and mechanical properties
yielding K hpa = 0 do not exist. Moreover, for the conditions of K hj = 0, P = ~ ± il1 and those
close to those conditions, the distribution form of K hpa differs from that of K hj.

The distribution forms of the stress intensity Khg of the singular solution of type log r,
as expressed in eqn (2) is represented by that of K hpa near the condition ofPj -+ 1, however,
the distribution form of K~g for P -+ I in eqn (2) differs from that of K hj. Figure 15 shows
the distributions of K hg and K hg for the double root P ~ I with C{JI = 129.2° in the Cu/Si3N4

composite formed from C{JI +C{J2 = 360° under cooling. It is found from Fig. 15 that the
distribution form of K hg is represented by Style 5.

The distribution form of Kh~ and Kh~ for P = ± ~il1 represent similar forms to K hj and
Kh(j+ I) for Pj, Pj+ I depending on the complex root. i.e. when P = ~ ± i'l occurs by combining
the two roots PI and P2 against wedge angles of materials and their mechanical properties,
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Fig. 13. Distributions of stress intensity Kh3 independent of the thermal expansion coefficient for
the third root (a) PJ = 1.0330 when <PI = 120° and (b) PJ = 0.9310 when <PI = 150°, in the Cu(SiJN.

composite with <PI + <P2 = 3600 under cooling.

the distribution forms of K h{ and Kh~ are expressed by Styles 1--4, and when it occurs by
combining P2 and P3 against those, K h{ and Kh~ by Styles 3-6. Also, K h{ and Kh~ are larger
as complex root P = ~ ± i'1 approaches the condition changing into a real root with wedge
angles of materials and their mechanical properties, because the values of (dSjdp)p~{±i~

approach zero.

4.5. Discussion by FEM
The distribution of the thermal stresses near the apex is examined by FEM (MARC).

For CujSi3N4 under AT= -500 K, two geometries (Fig. 16) are used in plane strain
~ondition (see Fig. 2 for the material data). The stress intensity theoretically becomes
Khl = 0 when ({JI = 118.87° (then, PI = 0.7394) for ({JI +({J2 = 210°, and Khl = 0 when
fIJI = 146.50° (PI = 0.5410) and K h2 = 0 when ({JI = 85.600

(P2 = 0.9527) and 195.10°
(P2 = 0.8437) for ({JI + ({J2 = 270°. From Fig. 11, the classification of distribution for K hl

md K h2 is perceived, and it is found that root Pj existing in the range of 0 < Re(p) < I is
Jnly PI for ({JI + ({J2 = 210°, and PI and P2 for ({JI +({J2 = 2700

•

In the case of ({JI + ({J2 = 2100
, combinations «({Jj, ({J2) of the four bonded wedge are

:hosen as follows:

(36°, 174°) -+ PI = 0.8596, (84°, 126°) -+ PI = 0.7300

(114°,96°) -+ PI = 0.7334, (144°,66°) -+ PI = 0.7293.
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cp! + CP2 = 3600 under cooling.

The distributions for 8-direction stress (J88 near the apex, calculated using the FEM, are
shown in Fig. 17. Furthermore, the distribution of the stress for a point at
p = ria = 1.2821 x 10-4 is plotted. It can be seen from Fig. 17 that the stress distribution
is expressed by Style I when the combination of the bonded wedge is (36°, 174°) and
(84°,126°), and by Style 2 when that of the bonded wedge is (144°,126°). These results
agree with the classification of the distribution of the intensity Khl for the singular solution
yielding the dominant factor on the stress field near the apex, as shown in Fig. II(a). Also,
the stress in the case of (114°,96°) compares insignificantly with that in the other cases,
because the combination of the bonded wedge angle is near (118.87°,91.13°) yielding
Khl = O.

In the case of ({JI +({J2 = 270°, combinations «({Jl' ((J2) of the four bonded wedge are
considered as follows:

(30°,240°) --+ PI = 0.5819,P2 = 0.9895, (60°,210°) --+ PI = 0.6111,p2 = 0.9102

(144°,126°) --+ PI = 0.5419,P2 = 0.8525, (198°,72°) --+ PI = 0.4951,P2 = 0.8533.

The distributions for the stress (J88 near the apex (p = ria = 1.2821 x 10- 4
), calculated using

the FEM are shown in Fig. 18. It can be seen that the stress distribution is expressed by
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Style 1 when the bonded wedge angle is (30°,240°) and (60°,210°), and Style 2 when it is
(198°,72°). These results agree with the distribution of the intensity Kh1 shown in Fig. ll(a).
Also, the stress distribution is represented by Style 4 when the bonded wedge angle is
(144°,126°), because the combination of the bonded wedge angle is near (146.50°, 123.50°)
yielding Kht = O. Hence, the thermal stresses are then dominated by the singular solution
KhzrI" -I for the ~econd root Pz.

5. CONCLUSIONS

Characteristics of thermal stresses near the apex in dissimilar materials under thermal
loading were investigated theoretically and numerically. For the Cu/Si3N4 composite, the
relation between the intensity K hj of the stress field and bonded wedge angle was examined
in detail. Moreover, classification of the distribution of the stress intensity Khj was shown
on the ({Jt + ({Jz-({Jt plane. The contents in the present paper are summarized as follows.

(1) The distribution of the stress intensity against angle ({Jj is divided into the forms of
Styles 1 and 2 for K hlo Styles 3 and 4 for KhZ and Styles 5 and 6 for K h3 . The distribution
form of each Style is illustrated in the Appendix. The boundary of the wedge angle ({J},

varying from Styles 1, 3 and 5 to Styles 2, 4 and 6 in the distribution, is obtained from the
conditions of K hj = 0, Pj --+ 1 and P = ~ ± i11 concerning K hj = O. Also the distribution forms
of Khj differ from each Style near the conditions ofP = ~ ± i11.
(2) There are combinations of wedge angles of materials and their mechanical properties
for which the stress intensity K hj is zero regardless of angle e. The singular solutions can
disappear by following the combinations satisfying the condition of K hj = 0, even if root Pj

of an eigen equation exists in the range of 0 < Re(p) < 1.
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(3) The bonded wedge angle yielding K hl = 0 for the first root PI exists in C{)I > C{)2 when
GI < G2 and in C{)l < C{)2 when GI > G2. The wedge angle yielding K h2 = 0 for the second
root P2 exists one by one in C{)t > C{)2 and in C{)t < C{)2 regardless of stiffness ratio k t2 ( = Gt/G2),

respectively.
(4) When root P is a complex number P = ~ ± i1'/, the intensity Khj is separated into a real
part Kh~ and an imaginary one Kh~' Both Kh~ and Kh~ do not become simultaneously zero
for all the bonded wedge geometries.
(5) The distribution form of the particular solution K hpa is represented by the opposite sign
of the distributions of K hj for P = Pj near the condition ofP = 1, however, the combinations
of wedge angles of materials and their mechanical properties yielding K hpa = 0 do not exist.
Moreover, for the conditions of Khj = 0, P = ~ ± i1'/ and those close to those conditions, the
distribution form of K hpa differs from that of K hj. Furthermore, the distribution of K hg for
P --+ 1 is represented by that of K hpa for P = I near the condition of P --+ 1.
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APPENDIX

In this appendix, we exhibit the distribution forms of Style 1---6 for each stress component (rr, rO, (0). Tables
Al and A2 show the distributions of the stress intensity K"j' Table A3 shows those of K,el and Table A4 those of
K.el, in each Style for each root Pl' where j = I, 2 and 3. Here, the distributions of K"l are illustrated for three
cases where the interface B12 exists in the position of y = 0° and the stiffness ratio k12 is larger than I and smaller
than I under the existing B I2 at y = - «({J, + ({J2)/3, because the distribution forms of K"l vary somewhat against
k 12 and the position of B12 due to discontinuity on the interface.
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Table A3. Distribution forms of the stress intensity K,oj for each root Pj Table A4. Distribution forms of the stress intensity K60, for each root Pi
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