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Abstract—The characteristics of thermal stresses near apex in dissimilar materials composed of
arbitrary wedge angles under thermal loading are investigated theoretically and numerically. The
thermal stresses o, (h = rr, 7, 60) near the apex are represented by K, #"~', where p,— 1 is the order
of stress singularity and K, indicates the intensity of stress field with j=1,2,...,a. For the
metal/ceramics composite, combinations of the bonded wedge angle, in which K}, becomes zero, are
clarified theoretically, and the disappearance conditions of stress singularity from both the order p;
and the intensity Kj; are examined. Also, classification of the distribution of the intensity K, which
divided into two forms is shown for p, and p,, respectively, on the ¢, + ¢,—-¢, plane. © 1997 Elsevier
Science Ltd.

1. INTRODUCTION

In dissimilar materials, the stress singularity frequently occurs under surface tractions and
thermal loading due to discontinuity of materials on the interface. The stress fields o,
(h = rr,r0,00) near the apex, in dissimilar materials, are defined by a linear combination
of the singular solutions K,,r~"' of type r*~' corresponding to roots p; in 0 < Re(p) < 1
and K, logr of type logr to a double root at p = 1, no singularity ones K,,r” ' to roots p,
in Re(p) > 1 and particular ones K, to a root at p = | and K, to a double root at p = 1
(Bogy, 1970; Inoue et al. 1994 ; 1995), where p; is the j-th root of an eigen equation and X,
for each solution indicates the intensity of the stress field. Bogy (1971a), and Hein and
Erdogan (1971) derived the eigen equation for a two-phase bonded structure with arbitrary
wedge angles, and they have clarified the relationship between the order of stress singularity
and the combinations of materials with wedge angles and mechanical properties. Bogy
(1971b), Fenner (1976), and Cook and Erdogan (1972) investigated two bonded half planes
containing a semi-infinite crack terminating at an interface, and showed that the order of
stress singularity at the tip of the crack existing in the stiff side of the two-phase materials
becomes large in comparison with that in the soft side. Blanchard and Ghoniem (1989)
examined thermal stress singularities in finite bonded quarter planes by using an eig-
enfunction expansion method.

As mentioned above, studies on the order of stress singularity have so far been carried
out by the above investigators and others (Inoue and Koguchi, 1996 ; Koguchi ez a/., 1996 ;
Pageau ez al., 1994a; 1994b; Williams, 1952), and the relationship between the order of
stress singularity and the combinations of materials has been made clear. However, the
characteristic on the intensity of the stress field in dissimilar materials is not made clear. In
particular, a relation between the stress intensity and the combinations of materials has not
yet been theoretically clarified for dissimilar materials with arbitrary wedge angles.

In this paper, the equations for thermal stresses near the apex, in semi-infinity dissimilar
materials composed of two homogeneous isotropic wedges with arbitrary angles under a
uniform temperature change (Fig. 1), are theoretically derived using the Airy stress function
through the Mellin transform. The uniform temperature change is then assumed to act on
the whole of the bonded structure. Next, for the bonded structure of Cu/Si;N, composed
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Fig. 1. Model for a two-phase bonded structure under a uniform temperature change.
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of three-quarters planes, a relation between the order of stress singularity and the wedge
angle ¢, of material 1 is investigated, and the distributions of the stress intensities K),; and
K,, for roots p, and p, are examined as to how they vary with the wedge angle ¢,. It is
shown that the distribution of the intensity K}, is classified by two forms for those of root
P and p,, respectively. Also, the singular solutions can disappear even if the root p; of the
eigen equation exists in the range 0 < Re(p) < 1, by finding the combinations of the bonded
wedge angles yielding K,; = 0. Hence, it is very important for improving the reliability of
dissimilar materials to investigate the bonded wedge geometry yielding K,; = 0. So, the
relationship between the wedge angle ¢, of material 1 and the total angle ¢,+ ¢, of the
bonded wedge, in which Kj; become zero, is studied in detail for the Cu/Si;N, composite.
After that, classification of the distribution of the intensity K, is shown on the ¢, + ¢y,
plane, and the disappearance conditions of stress singularity from both the order of singu-
larity and the stress intensity are clarified.

2. THERMOELASTIC THEORY IN DISSIMILAR MATERIALS

The theoretical solutions of the thermal stresses in dissimilar materials under thermal
loading are defined by the process shown in Table 1 (Inoue et al., 1995), as follows
In the case of a singularity of type "~

Eu, AT &
222 = Z Khjpﬂ’vl +tha' (1)
j=1

O-h(rsg)/ 1+V2
7

In the case of a singularity of type logr

E,u, AT
0,(r. ) / iy, = Kuwlogp+Ki, @

where h represents each stress component (rr, 6, 08) and the dimensionless variable p is
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Table 1. Derivation process of thermal stresses in a two-phase bonded
structure under a uniform temperature change

1
Airy stress function ¢*, stresses (¢*, 0%, %) and
displacements (1% u#) through the Mellin transform
l For boundary condition of
stresses and displacements
2
[Als,s{o} = {L}
{(H} = {al’ bls Cyy dl, @y, bz, Cy dQ}T
{L} ={0,0,0,0,T,,0,0,0}'T
o
ki, ("1 a_l —”2)
T, = E,u, AT 2 R
1—v, plp—1)
G, 1+v for plane strain
kp=—, n=
G, 1 for plane stress
According to
Cramer’s Principle
3
1 1
a(p)s = ETIZMaés b(p)s = E‘T”MM
1 1
c(p)s = 5 T M, d(p)s= 3 T3 My
§': Eigen equation, é (=1, 2): Each region number
From reversion of the
Mellin transform
4 c+ioo

-1
a,,(r,9)=ﬁf oX(p, ) 'dp etc.

¢ —ioo

0<Re(p), 0<r<ow

p = a( < )5 ( )

where a is a radius of a uniform temperature change acting to the semi-infinity bonded
structure and must be much more than distance r. The first term in eqn (1) is the solution
corresponding to the j-th root p, of an eigen equation in the range of 0 < Re(p) <1
(singularity) and Re(p) > 1 (no singularity), the second term which is independent of
distance r is a particular solution corresponding to a root of p = 1 which is always the root
of the eigen equation, and eqn (2) is a solution corresponding to a double rootof p = 1(p —
1). The Ky, K, K;, and K, for each solution in eqns (1) and (2) are the dimensionless
stress intensities which depend on the wedge angles of the materials, their mechanical
properties (Young’s modulus, Poisson’s ratio and thermal expansion coefficient) and the
angle coordinate 8. As is seen from eqns (1) and (2), the thermal stresses near the apex are
calculated from the sum of each solution for root p; of the eigen equation. The eigen
equation of the two-phase bonded structure is derived by expanding and arranging the
determinant of the coefficient matrix A of an 8 x 8 system of Step 2 in Table 1 (Bogy,
1971a), defined as
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S(@1, 02,212, B1250) = A(@1, 025 )12 +2B(p1, 013 P2 fry + Cloy, @15 p)o03,
+2D(p,, ¢, ;P)ﬂlz +2E(¢p,, Q2P0+ F(@,0.50),  (4)

where a, and f,, are parameters shown by Dundurs (1969), defined as

kiamy—m, kia(my—2)—(m; —2)
fxlzzma ﬁlzz kim, +m, ’ )
with
4(1—v;) for plane strain
a {4/(1 +v;) for plane stress’ ©

where &, represents the stiffness ratio (see Step 2 in Table 1) and J represents each region
number (¢ = 1,2). In Table 1, a function T, of Step 2 which is dependent on the thermal
expansion coefficient is led from the interface condition for the r-direction displacement
through the Mellin transform (Sneddon, 1951), and M~ M of Step 3 are functions
involving the wedge angles, elasticity constants (Young’s modulus and Poisson’s ratio) and
the root p,. In eqns (1) and (2), the stress intensities K, Kj,., K, and K, of each solution
non-dimensionalized by E,x, AT/(1+v,) can be written as

K, = K, (nl gi —n2>etc. )

2

where K), is an independent function of the thermal expansion coefficient.

3. THEORETICAL RESULTS

In this section, the relation between the stress intensity K, and the bonded wedge angle
in a metal/ceramics composite under thermal loading is examined in plane strain condition.
The bonded structure of the Cu/Si;N, composite composed of three-quarters planes with
material properties as shown in Fig. 2 is analyzed. A uniform negative temperature change
—AT is assumed to act on the whole of the structure. Such a situation occurs during
soldering of a metal/ceramics composite.

3.1. Distribution of stress intensity

The variations of roots p; of the eigen equation with the wedge angle ¢, of material 1
are plotted in Fig. 3. The roots noted here are only concerned with the stress singularity.
The roots in the cases of ¢, = 0° and 270° agree with those in a free-free single wedge for
a wedge angle of 270° given by Williams (1952). Varying the wedge angle ¢, from 0° to
270°, two roots p, and p, vielding the singular solution of type ¥ ~! occur, where the second
root p, is a double root at p, =1 in ¢, = 97.20° and 120.24°, i.e. the singular solution
of type logr occurs. Also, the solution for p, exhibits no singularity in the range of
97.20° < ¢, < 120.24°. The solution for the first root p, yielding the dominant factor on
the stress field near the apex gives the singular solution of type r?~! for all values of ¢,.
Figures 4 and 5 show the distributions of stress intensity against angle € of roots p, and p,
in the cases of ¢, = 45° and 180°, respectively, where F, and F, indicate the free surface,
and B, and CL indicate the interface (f = 0°), and y = 0° (—135° < y < 135°) as shown
in Fig. 2. K,; shown in these figures is the independent function of the thermal expansion
coefficient as shown in eqn (7). It is found from Fig. 4 that the signs (tension and com-
pression) of stress intensity for p, in ¢, = 45° are reversed to those in ¢, = 180° for each
stress component (rr, rd, 08). The form of the distribution as shown in ¢, = 45° is referred
to as Style 1, and that in ¢, = 180° as Style 2. Also, Ky, attains a maximum tension in
Style 1 and compression in Style 2 at ca. y = 0°(CL), where y = (¢, —135°)+6 from the
relation illustrated in Fig. 2. In Fig. 5, the distributions of the stress intensity for p, in
@, = 45° are reversed to those in ¢, = 180°. The form of the distribution in ¢, = 45° is
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Fig. 2. Cu/Si;N, composite in three-quarter planes under thermal loading.
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Fig. 3. Variations of roots p; of the eigen equation concerned with stress singularity against wedge
angle ¢, of material 1.

referred to as Style 3 and that in ¢, = 180° as Style 4. Also, it is found that K, attains a
maximum tension and compression near y = + (@, +¢,)/5, as well as K,,, near y = 0°,
+ (¢, + ¢,)/3 in both Style 3 and 4.

In these results, the distribution of the stress intensity K, is divided into two forms of
Style 1 and 2 for p, and Style 3 and 4 for p,. We expect that the stress intensity Kj; becomes
zero regardless of angle 8 at a bonded wedge angle where the distribution form of the
intensity varies from Style 1 to 2 for p, and from Style 3 to 4 for p,.

3.2, Bonded wedge angle satisfying K =0
The stress intensity K, for root p; is defined as

dz
K. (p;,D; = —[ +(p,-+1)]KF,-(p,-, 0)1s

do?
d
Krﬂj(Pj’ s = Pj@KFj(Pj, 0)(s-
KGHj(pj’ s = _pj(pj+1)KFj(pja s, 3

where the function Kz(p;, 6) is given by

oy

1 > M j’9 J
KFj(pj’e)Ié = (nlz‘—”;:)KFj(Pjae)]a = ("1—‘”2) 7,91
7% o4

d
pj(pj— l)d_-pS[p=pj

&)

2
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Fig. 4. Distributions of stress intensity K, independent of the thermal expansion coefficient for root
(a) p; = 0.6022 in ¢, = 45° and (b) p; = 0.5148 in ¢, = 180°.

with
M(p;,0) s = —M,s(p) sin[(p;+1)0]+ M,;(p)) cos [(p; +1)6]
~M.s(p))sin[(p,— )01+ M 45(p;) cos [(p,— 1)), (10)

where, §(=1,2) represents each region number. Also, M, ;~ M, are functions involving
the wedge angles, Dundurs parameters and the root p of the eigen equation. Hence, the
stress intensity Kj; for each component becomes zero in all regions (i.e. regardless of angle
0) according to the function K5 = 0,i.6. M, = My; = M5 =M, =0.

Figure 6 shows the relationship between the function K, for the root p, aty = 0°(CL)
and the wedge angle ¢,, where the function K;, is independent of the thermal expansion
coefficient. In this result, Ky, is positive in the range 0° < ¢, < 146.50°, negative in
146.50° < ¢, < 270° and equal to zero at ¢, = 146.50°. Therefore, the distribution of
the stress intensity K, represents Style 1 in the range 0° < ¢; < 146.50° and Style 2 in
146.50° < ¢, < 270°, and K, becomes zero regardless of angle 8 at the angle ¢, = 146.50°
where the distribution varies from Style 1 to 2. Furthermore, K, becomes zero at ¢, = 0°
and 270°, i.e. a free-free single wedge for 270°.

Figure 7 shows the variation of function K, for the root p, at y = 54° with the wedge
angle ¢,. As seen from Fig. 7, the function K-, becomes zero at ¢, = 85.60° and 195.10°,
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Fig. 5. Distributions of stress intensity K,, independent of the thermal expansion coefficient for root
(a) p, = 0.9536 in ¢, = 45° and (b) p, = 0.7986 in ¢, = 180°.
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Fig. 6. Relationship between function Ky, for root p; at y = 0° and wedge angle ¢, of material 1.

and larger as the angle ¢, approaches the bonded wedge geometry with logarithmic singu-
larity, i.e. @, = 97.20° and ¢, — 120.24°. It is found that the sign of K, is reversed at these
wedge angles. Consequently, the distribution of the stress intensity K, represents Style 3
in 0° < ¢, <85.60°, 97.20° < ¢, < 120.24° and 195.10° < ¢, < 270°, and Style 4 in
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85.60° < ¢y < 97.20° and 120.24° < ¢, < 195.10°. Furthermore, K, becomes zero at
¢, = 0° and 270°.

4. DISCUSSION

4.1. Results of analysis

It is found from Figs 4-7 that the distribution of the stress intensity K, is divided into
two forms of Style 1 and 2 for p,, and Style 3 and 4 for p, at the angle, ¢,, yielding the
conditions of K, = 0 and p — 1 (a double root of the eigen equation). The first condition
K,; = 0 is derived from the numerator M(p;,8) in eqn (9) and the second p — 1 from the
eigen equation in eqn (4). The magnitude of the stress intensity K, strongly depends on the
value of the first derivative of the eigen equation, i.e. (dS/dp),_,,. Figure 8 shows (dS/dp),_,;
and (dS/dp),., against the wedge angle ¢,. It can be seen that the absolute values of
(dS/dp),_,, compare largely with those of (dS/dp),_,,. Therefore, the magnitude of X, for
root p, is small in comparison with that of K, for p, (Figs 4 and 5). The value of (dS/dp),..,
does not change the sign of K, since it is negative for all values of ¢,. Incidentally, the
value of (dS/dp),.,; is positive in the range 0° < @, < 97.20° and 120.2° < ¢, < 270°
(singularity of type r’~ '), negative in the range 97.20° < ¢, < 120.24° (no singularity) and
zero at ¢, = 97.20° and 120.24° (logarithmic singularity). Hence, (dS/dp),_,, affects the
change of sign of K,,. Also, the stress intensity K, approaches infinity as ¢, — 97.20° and
@, = 120.24° (Fig. 7), because the values of (dS/dp),_,, then approach zero. The particular
solution K,,, [Munz et al. (1993b) called this solution the regular stress term] also
approaches infinity as ¢, — 97.20° and ¢, — 120.24° [i.e. (dS/dp),_ ], where it always has the
opposite sign as K, because (dS/dp),_,, and (dS/dp),_, have the opposite sign. Therefore,
K,»/K,,. = —1 for p — 1. This characteristic agrees with that obtained by Munz and Yang
(1993a), and Munz et al. (1993b).
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Fig. 8. First derivative dS/dp of roots p,, p, and p = 1 with wedge angle ¢, of material 1.
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Furthermore, in the present analysis, the distribution of stress intensity for dissimilar
materials under cooling was examined and that under heating is obtained by reversing the
signs of results for the present analysis.

4.2. Relation with K = 0 of wedge angle ¢, and total angle ¢, + ¢,

The singular solution K+ ' can disappear under combinations of materials yielding
K,; =0, even if root p; of the eigen equation exists in 0 < Re(p) < 1. Figure 9(a) shows the
relationship yielding K,,; = 0 between the wedge angle ¢, and the total angle ¢, + ¢, of the
bonded wedge in the Cu/Si;N, composite under thermal loading. Figure 9(b) shows the
variations of the corresponding root p, with the total angle ¢, + ¢,. The bonded wedge
angle, @, + ¢,, yielding K, = 0 exists in the range of 163° < ¢, + ¢, < 337°, but does not
exist in the ranges of ¢, + ¢, < 163° and ¢, + ¢, > 337°, because the corresponding root p,
is then a complex one p(=¢&+in). When p = £ +in, the intensity is separated into the real
part K,: and imaginary part K,,, and the bonded wedge angle yielding simultaneously
K,: = 0 and K,, = 0 then does not exist. Also, it is found from Fig. 9(a) that the bonded
angle yielding K, = 0 exists in the range of ¢, > (¢, + ¢,)/2 when G, < G, and in that of
@, <(@ + @,)/2when G| > G,. In the range 170° < ¢, + 9, < 305°, the relationship between
¢, and @, + @, can be expressed by the approximate equation: ¢, = 0.464(p, + ¢,) +21.766.
In Fig. 9(b), the corresponding root p, is within 1.3507 > p, = 0.5057, where p, is larger
than 1 (no singularity) in ¢, + ¢, < 180° and smaller than 1 (singularity of type r*~'} in

200 . : - @
! Cu/Si,N, '
T i A ! J _ -
Mz 3 170 ot
s 150 ! { .
= [ 1637 i
=8 - t
W o : . ;e ]
® o F : - 305°  337°
s 100 i :
¥ i N :
Y L . |
: P =(@ +9,)/2 :
50 T | 1 1 | I S N W | ) WO RO T S | 1a. 4 a2 1) i
120 180 240 300 360
Total angle of bonded wedge @, +@, (deg)
15 H ! (b)
S I : Cu/SiyN, :
z [ \' E
S o1as | : :
3 N 180° (No Singularity) :
§ [ : :
x 1 . ,
® - .
N ' ( Singularity !
&8, 0.75 - 163° E \, L of Type r®! 3(:)5 337
= L ! '
S S 1S :
3 0‘5 PO i I PR i) —r——h [

120 160 200 240 280 320 360

Total angle of bonded wedge @, +@, (deg)

Fig. 9. (a) Relationship yielding K, = 0 between the wedge angle ¢, of material 1 and the total
angle ¢, + ¢, of the bonded wedge and (b) variations of the corresponding root p,, in the Cu/Si;N,
composite under thermal loading.
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Fig. 10. (a) Relationship yielding K, = 0 between the wedge angle ¢, of material 1 and the total
angle @, + @, of the bonded wedge and (b) variations of the corresponding root p,, in the Cu/Si;N,
composite under thermal loading.

@+ @, > 180°, i.e. the root p, for ¢,+ ¢, = 180° gives a boundary of singularity and no
singularity.

Figure 10(a) shows the relationship yielding K,, = 0 between ¢, and ¢,+ ¢, for the
Cu/Si;N, composite under thermal loading and Fig. 10(b) shows the variations of the
corresponding root p, with the total angle ¢,+ ¢,. The wedge angle ¢, yielding K, =0
exists one by onc in @, > (¢, + ¢,)/2 and in ¢, <(@,+ ¢.)/2, respectively. One exists in the
range 188° < ¢+ ¢, < 354° and another in 166° < ¢,+ ¢, < 337°. A slope against
@, vielding K,, = 0 against ¢,+ ¢, existing in ¢; > (¢, +@,)/2 is larger than 1/2 and
that in ¢, <(¢,+@,)/2 is smaller than 1/2. The corresponding root p, is within
1.8400 = p, = 0.5472 and 1.5515 = p, > 0.5134, respectively, and the root corresponding
to the bonded geometry yielding K, = 0 existing in ¢, > (¢;+ ¢,)/2 is small in comparison
with that existing in ¢, <(¢,+ ¢,)/2. Also, the ranges with ¢, + @, yielding K, # 0 exist,
where the corresponding root p, is then a complex one.

4.3. Classification of distribution on K

The distributions of the stress intensities K,; and K, are categorized on the ¢, + @~
¢, plane from results denoted by (a) in Figs 9 and 10. The distributions of K, and K, are
classified into Styles 1 and 2 for K, and Styles 3 and 4 for K,,,, respectively (Fig. 11). Figure
11 shows the classification for dissimilar materials under cooling. On the other hand, the
classification under heating is obtained by changing each Style shown in Fig. 11, such as
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Fig. 11. Classification of the distribution on the stress intensity for (a) first root p; and (b) second
Toot p, in the Cu/Si;N, composite cooling.

Styles 1 and 3 under cooling changes into Styles 2 and 4 under heating, respectively. It is
found from Fig. 11 that the distributions alter from Style 1 to 2 and from Style 3 to 4,
respectively, at conditions of K,; = 0, p; — 1 (a double root at p = 1) and the complex root
which depends on K, = 0. Two roots p, and p, are divided in Re(p) > 1 (the left side of
the p, —» 1 line in Fig. 11} and Re(p) < 1 (the right side of that) by the p; — 1 line. Therefore,
the K, = 0 line and the region of the left side of p; — 1 line depicted in Fig. 11 indicate the
disappearance conditions of stress singularity for each solution. Here, in the region between
the right side of p;— 1 and the left side of p, - 1, root p; existing in the range of
0 < Re(p) < 1 is only p;; hence, the stress singularity then disappears if X,,, = 0. In the
region of the right side of p, — 1, two roots p; and p, exist in the range of 0 < Re(p) < 1;
hence, the singularity then does not disappear even if K,, = 0, because there is the singular
solution for the second root p,. However, the thermal stresses then become small because
the singular solution for the first root p,, yielding the most dominant factor on the stress
field near the apex, disappears.

Also, K, and K,, do not always represent the distributions of Styles 1 and 2 for K,
and Styles 3 and 4 for K,,. Those distributions differ from Styles 1-4 as the combinations
of wedge angles approach the regions producing complex roots. In the case of
@, + @, ~ 360°, the distribution styles of K, and K, for all the combinations of wedge
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Fig. 12. Variations of root p; against wedge angle ¢, in the Cu/Si;N, composite with ¢, + @, = 360°.

angles differ from Style 14, because the values of roots p, and p, are then nearly equal
(Fig. 12). Complex root occurs when two real roots combine with variations of wedge
angles of materials and their mechanical properties, which has been clarified by many
researchers (Inoue and Koguchi, 1996; Pageau et al., 1994a; Hein and Erdogan, 1971;
Fenner, 1976). Hence, when the values of two real roots p, and p, are almost equal, the
distribution forms of stress intensity for these roots indicate the characteristic near the
condition of p = {+in. Furthermore, the magnitude of the stress intensity K,; becomes
larger as the combinations of wedge angles approach the conditions of p; — 1 and those of
Pj» Pir1 = p = &+ in. As mentioned previously, K,;/K,,, —» —1 for conditions of p; — 1. For
conditions of p; and p;,, — p = { i, when K,; approaches infinity, the corresponding
intensity K, , also approaches infinity, where K, ;, always has the opposite sign as K,;;
therefore K, /K,;. .1, —»> —1forp, p;y1 —»p=E+in.

4.4. For other stress intensities

The distribution of the stress intensity K; for the third root p; is also divided into two
forms (Styles 5 and 6) with different signs for each stress component. Figure 13(a) and (b)
show the distributions of K,; for root p; = 1.0330 and 0.9310 in the case of the Cu/Si;N,
composite with ¢, = 120° and 150°, respectively, in the condition of ¢, + ¢, = 360° under
cooling. The form of the distribution as shown in Fig. 13(a) is referred to as Style 5 and
that in Fig. 13(b) as Style 6. The stress intensity Ky,; attains a maximum tension in Style 5
and compression in Style 6 neary = + (¢, + ¢,)/4, and a minimum in Style 5 and a maximum
in Style 6 near y = 0°(CL). Moreover, the distribution of K,; is nearly symmetrical with
respect to y = 0°.

The distribution of the particular solution K, for p = 1 as expressed in eqn (1) can
be perceived from Kj; for root p,. Then, the distribution of K, is represented by the
distributions of K); for p = p; near the condition of p = 1. For example, it is found from
Fig. 12 that the closest root to p = 1 is the third one ps, regardless of ¢, in the Cu/Si;N,
composite with ¢, + ¢, = 360°. The distribution of K, is then represented by Styles 5 and
6 (Fig. 14). As mentioned previously, the distribution form of K, always has the opposite
sign as that of K. Also, the combinations of wedge angles and mechanical properties
yielding K,,, = 0 do not exist. Moreover, for the conditions of K,; = 0, p = { +in and those
close to those conditions, the distribution form of K,,,, differs from that of K.

The distribution forms of the stress intensity K,, of the singular solution of type logr,
as expressed in eqn (2) is represented by that of K, near the condition of p; - 1, however,
the distribution form of X, for p — 1 in eqn (2) differs from that of K. Figure 15 shows
the distributions of K,, and K, for the double root p — 1 with ¢, = 129.2° in the Cu/Si;N,
composite formed from ¢, + ¢, = 360° under cooling. It is found from Fig. 15 that the
distribution form of K, is represented by Style 5.

The distribution form of Xj: and K, for p = + ¢in represent similar forms to X, and
K+ for p;, p;, 1 depending on the complex root. i.e. when p = { +in occurs by combining
the two roots p, and p, against wedge angles of materials and their mechanical properties,
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Fig. 13. Distributions of stress intensity K, independent of the thermal expansion coefficient for
the third root (a) p; = 1.0330 when @, = 120° and (b) py = 0.9310 when ¢, = 150°, in the Cu/Si;N,
composite with ¢, + ¢, = 360° under cooling.

the distribution forms of K. and K, are expressed by Styles 1-4, and when it occurs by
combining p, and p, against those, K, and K, by Styles 3-6. Also, K, and K, are larger
as complex root p = &+ in approaches the condition changing into a real root with wedge
angles of materials and their mechanical properties, because the values of (dS/dp),_¢ ..,
approach zero.

4.5. Discussion by FEM

The distribution of the thermal stresses near the apex is examined by FEM (MARC).
For Cu/Si;N, under AT = —500 K, two geometries (Fig. 16) are used in plane strain
condition (see Fig. 2 for the material data). The stress intensity theoretically becomes
K,, =0 when ¢, = 118.87° (then, p, = 0.7394) for ¢,+¢, =210°, and X,, =0 when
p, = 146.50° (p, = 0.5410) and K, =0 when ¢, =85.60° (p, =0.9527) and 195.10°
(p, = 0.8437) for ¢,+¢, = 270°. From Fig. 11, the classification of distribution for K,
ind K, is perceived, and it is found that root p; existing in the range of 0 < Re(p) < 1 is
only p, for ¢, + @, = 210°, and p, and p, for ¢, + ¢, = 270°.

In the case of ¢,+ ¢, = 210°, combinations (gp,, ;) of the four bonded wedge are
:hosen as follows:

(36°,174°) - p, = 0.8596, (84°,126°) — p, = 0.7300
(114°,96°) - p, = 0.7334, (144°,66°) - p, = 0.7293.
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@, + @, = 360° under cooling.

The distributions for 6-direction stress oy hear the apex, calculated using the FEM, are
shown in Fig. 17. Furthermore, the distribution of the stress for a point at
p =rja= 12821 x107*is plotted. It can be seen from Fig. 17 that the stress distribution
is expressed by Style 1 when the combination of the bonded wedge is (36°,174°) and
(84°,126°), and by Style 2 when that of the bonded wedge is (144°,126°). These results
agree with the classification of the distribution of the intensity K, for the singular solution
yielding the dominant factor on the stress field near the apex, as shown in Fig. 11(a). Also,
the stress in the case of (114°,96°) compares insignificantly with that in the other cases,
because the combination of the bonded wedge angle is near (118.87°,91.13°) yielding
K, =0.

In the case of ¢,+ ¢, = 270°, combinations (¢,, ¢,) of the four bonded wedge are
considered as follows :

(30°,240°) — p, = 0.5819, p, = 0.9895, (60°,210°) — p, = 0.6111, p, = 0.9102
(144°,126°) — p, = 0.5419, p, = 0.8525, (198°,72°) — p, = 0.4951,p, = 0.8533.

The distributions for the stress oy near the apex (p = r/a = 1.2821 x 10~ %), calculated using
the FEM are shown in Fig. 18. It can be seen that the stress distribution is expressed by



Relaxation of thermal stresses in dissimilar materials 3229

0.4 E B, CL F, @)
I~
. ) mr
(K, -E [a+vyz-a )D I
= K| Qv =@+l |- 0o
-0.4 . . a1 g
-129.2 -69.2 9.2 50.8 110.8 170.8 230.8
6 (deg)
1 B B, ¢ E ®)
ég.sihg'[(1+vl)£’-—(l+vz)D ___:z
0.5 —u---as 00

- - +
9 ,----.,.

B 0 bl 7

-

-0.5 / I
_1 ! ] i1 | 1 1 1 S T T J WY | 1 N
-129.2 -69.2 9.2 50.8 110.8 170.8 230.8
8 (deg)
lA N TR T R ST ST R R |
-180 -120 -60 0 60 120 180
Y (deg)

Fig. 15. Distributions of stress intensity (a) K,, and (b) K}, independent of the thermal expansion
coefficient for the double root p — 1.00, in the Cu/Si;N, composite with ¢, + ¢, = 360° under
cooling.

(b)
_CL

@

Material 1
Cu

Material 1
Cu

DU
Fig. 16. The bonded structure of the Cu/Si;N, composite in (a) ¢,+¢, =210° and (b)
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Style 1 when the bonded wedge angle is (30°, 240°) and (60°, 210°), and Style 2 when it is
(198°, 72°). These results agree with the distribution of the intensity K, shown in Fig. 11(a).
Also, the stress distribution is represented by Style 4 when the bonded wedge angle is
(144°,126°), because the combination of the bonded wedge angle is near (146.50°, 123.50°)
yielding K,, = 0. Hence, the thermal stresses are then dominated by the singular solution
K;,p2~ ! for the second root p,.

5. CONCLUSIONS

Characteristics of thermal stresses near the apex in dissimilar materials under thermal
loading were investigated theoretically and numerically. For the Cu/Si;N, composite, the
relation between the intensity K); of the stress field and bonded wedge angle was examined
in detail. Moreover, classification of the distribution of the stress intensity Kj; was shown
on the @+ @,—~¢, plane. The contents in the present paper are summarized as follows.

(1) The distribution of the stress intensity against angle ¢, is divided into the forms of
Styles 1 and 2 for K, Styles 3 and 4 for K, and Styles 5 and 6 for K,;. The distribution
form of each Style is illustrated in the Appendix. The boundary of the wedge angle ¢,,
varying from Styles 1, 3 and 5 to Styles 2, 4 and 6 in the distribution, is obtained from the
conditions of K;, = 0, p, = I and p = £+ iy concerning K,; = 0. Also the distribution forms
of K, differ from each Style near the conditions of p = { +in.

(2) There are combinations of wedge angles of materials and their mechanical properties
for which the stress intensity K, is zero regardless of angle 8. The singular solutions can
disappear by following the combinations satisfying the condition of K, = 0, even if root p,
of an eigen equation exists in the range of 0 < Re(p) < 1.
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(3) The bonded wedge angle yielding K, = 0 for the first root p, exists in ¢, > ¢, when
G, < G; and in ¢, < ¢, when G, > G,. The wedge angle yielding K, = 0 for the second

root p, exists one by one in ¢, > ¢, and in ¢, < ¢, regardless of stiffness ratio k,, (=G,/G,),
respectively.

(4) When root p is a complex number p = & +in, the intensity K), is separated into a real

part K, and an imaginary one K,,. Both K,; and K, do not become simultaneously zero
for all the bonded wedge geometries.

(5) The distribution form of the particular solution X,,,, is represented by the opposite sign
of the distributions of K}, for p = p; near the condition of p = 1, however, the combinations
of wedge angles of materials and their mechanical properties yielding K,,, = 0 do not exist.
Moreover, for the conditions of Kj; = 0, p = £ +in and those close to those conditions, the
distribution form of K, differs from that of K,,;. Furthermore, the distribution of K, for
p — 1 is represented by that of K,,,, for p = 1 near the condition of p — 1.
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APPENDIX

In this appendix, we exhibit the distribution forms of Style 1-6 for each stress component (rr, r6, 86). Tables
Al and A2 show the distributions of the stress intensity X,,;, Table A3 shows those of K, and Table A4 those of
Ky, in each Style for each root p, where j = 1, 2 and 3. Here, the distributions of K, are illustrated for three
cases where the interface B,, exists in the position of y = 0° and the stiffness ratio k,, is larger than 1 and smaller
than 1 under the existing B,, at y = — (¢, + ¢,)/3, because the distribution forms of K,,; vary somewhat against
k., and the position of B,, due to discontinuity on the interface.
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Table A3. Distribution forms of the stress intensity K, for each root p,
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Table A4. Distribution forms of the stress intensity Ky, for each root p,
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